Treatment with low-temperature plasma is emerging as a novel cancer therapy. Previous studies have shown that plasma can deactivate cancer cells in vitro, suppress tumour growth in vivo and potentially induce anti-tumour immunity. Researchers at the University of Tokyo are investigating another promising application – the use of plasma to inhibit tumour recurrence after surgery.
Lead author Ryo Ono and colleagues demonstrated that treating cancer resection sites with streamer discharge – a type of low-temperature atmospheric plasma – significantly reduced the recurrence rate of melanoma tumours in mice.
“We believe that plasma is more effective when used as an adjuvant therapy rather than as a standalone treatment, which led us to focus on post-surgical treatment in this study,” says Ono.
In vivo experiments
To create the streamer discharge, the team applied a high-voltage pulse (25 kV, 20 ns, 100 pulse/s) to a 3 mm-diameter rod electrode with a hemispherical tip. The rod was placed in a quartz tube with a 4 mm inner diameter, and the working gas – humid oxygen mixed with ambient air – was flowed through the tube. As electrons in the plasma collide with molecules in the gas, the mixture generates cytotoxic reactive oxygen and nitrogen species.
The researchers performed three experiments on mice with melanoma, a skin cancer with a local recurrence rate of up to 10%. In the first experiment, they injected 11 mice with mouse melanoma cells, resecting the resulting tumours eight days later. They then treated five of the mice with streamer discharge for 10 min, with the mouse placed on a grounded plate and the electrode tip 10 mm above the resection site.

Tumour recurrence occurred in five of the six control mice (no plasma treatment) and two of the five plasma-treated mice, corresponding to recurrence rates of 83% and 40%, respectively. In a second experiment with the same parameters, recurrence rates were 44% in nine control mice and 25% in eight plasma-treated mice.
In a third experiment, the researchers delayed the surgery until 12 days after cell injection, increasing the size of the tumour before resection. This led to a 100% recurrence rate in the control group of five mice. Only one recurrence was seen in five plasma-treated mice, although one mouse that died of unknown causes was counted as a recurrence, resulting in a recurrence rate of 40%.
All of the experiments showed that plasma treatment reduced the recurrence rate by roughly 50%. The researchers note that the plasma treatment did not affect the animals’ overall health.
Cytotoxic mechanisms
To further confirm the cytotoxicity of streamer discharge, Ono and colleagues treated cultured melanoma cells for between 0 and 250 s, at an electrode–surface distance of 10 mm. The cells were then incubated for 3, 6 or 24 h. Following plasma treatments of up to 100 s, most cells were still viable 24 h later. But between 100 and 150 s of treatment, the cell survival rate decreased rapidly.
The experiment also revealed a rapid transition from apoptosis (natural programmed cell death) to late apoptosis/necrosis (cell death due to external toxins) between 3 and 24 h post-treatment. Indeed, 24 h after a 150 s plasma treatment, 95% of the dead cells were in the late stages of apoptosis/necrosis. This finding suggests that the observed cytotoxicity may arise from direct induction of apoptosis and necrosis, combined with inhibition of cell growth at extended time points.
In a previous experiment, the researchers used streamer discharge to treat tumours in mice before resection. This treatment delayed tumour regrowth by at least six days, but all mice still experienced local recurrence. In contrast, in the current study, plasma treatment reduced the recurrence rate.
The difference may be due to different mechanisms by which plasma inhibits tumour recurrence: cytotoxic reactive species killing residual cancer cells at the resection site; or reactive species triggering immunogenic cell death. The team note that either or both of these mechanisms may be occurring in the current study.
“Initially, we considered streamer discharge as the main contributor to the therapeutic effect, as it is the primary source of highly reactive short-lived species,” explains Ono. “However, recent experiments suggest that the discharge within the quartz tube also generates a significant amount of long-lived reactive species (with lifetimes typically exceeding 0.1 s), which may contribute to the therapeutic effect.”
One advantage of the streamer discharge device is that it uses only room air and oxygen, without requiring the noble gases employed in other cold atmospheric plasmas. “Additionally, since different plasma types generate different reactive species, we hypothesized that streamer discharge could produce a unique therapeutic effect,” says Ono. “Conducting in vivo experiments with different plasma sources will be an important direction for future research.”
Looking ahead to use in the clinic, Ono believes that the low cost of the device and its operation should make it feasible to use plasma treatment immediately after tumour resection to reduce recurrence risk. “Currently, we have only obtained preliminary results in mice,” he tells Physics World. “Clinical application remains a long-term goal.”
The study is reported in Journal of Physics D: Applied Physics.
The post Low-temperature plasma halves cancer recurrence in mice appeared first on Physics World.